Posts Tagged ‘data acquisition’

Save sensor data to Google Spreadsheets by Codebox

Saturday, December 25th, 2010

I found this is really a good way to gather data, since Google Spreadsheets is free and can be accessed from any places in the world as long as connected to the internet. Plus, you can share it with selected persons you want. It’s quite useful for scientific researchers to share and analyze their findings. Check this out (completed with the codes):

The “Hello Arduino” section in Chapter 11 of Getting Started with Processing shows how to read data into Processing from Arduino. In a nutshell, the Arduino code (example 11-6 in the book) reads data from a light sensor and writes it out to the serial port. The section then goes on to describe a number of increasingly sophisticated sketches that retrieve and visualize the sensor data using Processing’s Serial library.

This Codebox shows you how to save this sensor data to a Google Spreadsheet. The cool thing is that you can then use any of the goodies that Google provides (charts, gadgets, maps, etc) directly with your data. While the light sensor is pretty basic, you can use this basic setup to record data from more sophisticated sensors, such as a Parallax GPS receiver module into Google Spreadsheets, and then create a map of where you’ve been that you could post as a gadget.

The sketch relies on the Google API Client Library for Java, which is a set of code libraries for interacting with various Google’s services (not just Spreadsheets). In researching this article, I found Processing guru Jer Thorpe‘s article Open Science, H1N1, Processing, and the Google Spreadsheet API a great inspiration. While it’s based on an older version of the API (version 1.0, while the APIs are now up to version 3.0), it’s a great introduction to interacting with Google.

Courtesy Make

Arad Metering Technologies Conserves Water via Battery-Operated Drones

Sunday, August 22nd, 2010

remote meter reader
Illustration by Chris Philpot

The word drone may sounds related to any contemporary sci-fi flicks, or images of attacks carried out remotely on hostile lands, or even your high-school biology teacher’s voice. We don’t expect a drone to help us save water, but that’s what Arad Metering Technologies intends to do. The Israeli company’s battery-operated drone is one of the novel tools it’s deploying to help consumers and companies conserve H2O — and to make money.

Such an idea would come out of Israel is no coincidence. The country is poor in water and rich in tech innovation, much of it born of constant military conflict. Israel pioneered the use of unmanned aerial vehicles after it lost many fighter jets in the 1973 war. But Arad’s drones don’t fight: They read data from the company’s patented water-meter system to detect leakage or, in irrigation systems, drought.

The World Bank estimates that water wastage costs utilities $14 billion a year worldwide; in developing countries, 200 million more people could be served by the water lost to leaks and theft. Arad CEO Dan Winter says this is largely a consequence of how the business works in places where water is cheap or untaxed: “You train people to abuse water because they pay very little.”

Photos courtesy of Arad Technologies LTD

With this innovation, instead of meter reading – it can provide real time monitoring of water supply infrastructures. Its technology can find irregularities — a pipe failure, an unusually low flow rate, or a too-constant one that could indicate a leak — in a few hours, rather than every 60 days as with a typical meter reading.

Arad’s system is built around what looks like a standard meter. The difference is on the inside, where you’ll find 3G wireless technology, a microcontroller, and 20-year batteries. Every 11 to 30 seconds, the system transmits data, which can be picked up by a drone (best for quickly covering big distances in remote areas) or by a drive-by or fixed-base reader. The data are then analyzed by computer to gauge how much water has been consumed, how much was lost, and even where tampering may have taken place. As a result, companies can save both water and man hours.

The possibilities for Arad’s services go far beyond water should be covering abilities to monitor everything from municipal infrastructure, such as traffic lights, to security-camera networks — basically any complex system prone to localized failures and waste. Arad has its own way, to proof drones could be associated with saving, not destroying; life, not death.

Courtersy: Tree Hugger, Fast Company

Keep tabs on your car with Multidisplay

Wednesday, March 17th, 2010


Stumble upon MultiDisplay car monitoring system. Unlike traditional systems that rely on interfacing with the OBD-II protocol and existing car computer, the MultiDisplay uses an Arduino and custom shield with a combination of sensors; including temperatures, pressures, throttle, Boost, and etc. The data collected can then be displayed on a 20×4 LCD or streamed to a PC with visualization and event recording. It’s an Arduino based open source display for interesting measurand´s of a car hosted on Google Code.

Courtesy: Multidisplay via Hackaday

Data Logger for iPhone…

Wednesday, January 13th, 2010


Data Logger for iPhone enables you to store and graph any data of your choosing along with a timestamp and geolocation. You might use Data Logger to store electricity meter readings, to create maps of pollution or temperature sensor readings around your neighbourhood, or animal sightings around the city. You can also set up custom data feeds, with user-defined min and max values, tags, description and units.

Links: pachube.apps via Make

Logging weight changes

Saturday, August 15th, 2009


This is a classic example of a well done hack, simply for the sake of hacking. [Jorge] wanted to be able to chart his weight changes.  His solution wasn’t to simply buy a scale that could be hooked to the computer. Those are available and aren’t really that expensive. He could have even used pencil and paper to chart it in a few seconds. Instead, [Jorge] started hacking. He took apart a digital scale he already had and installed his own circuit to display weight and write the values to a CSV. The CSV resides on a removable card which can then be put in his computer to chart the data in openoffice.

source: Hack A Day

DataNet Wireless Data Acquisition System

Friday, December 26th, 2008

The DataNet is a professional wireless data acquisition system using the Zigbee wireless protocol. Consisting of a USB base station, DataNet acquisition units, repeater units and the DataNet PC Suite logging software. The acquisition units have 4 inputs for direct measurement of PT-100, thermocouple, voltage 4-20mA, frequency and pulse. There is also a version with the addition of built-in temperature and humidity sensors.

Source: Audon Electronics

Remote Data Analysis in Motorsports

Tuesday, April 29th, 2008

Telemetry has been a key factor in modern motor racing. Engineers are able to interpret the vast amount of data collected during a test or race, and use that to properly tune the car for optimum performance. Systems used in some series, namely Formula One, have become advanced to the point where the potential lap time of the car can be calculated and this is what the driver is expected to meet. Some examples of useful measurements on a race car include accelerations (G forces) in 3 axes, temperature readings, wheel speed, and the displacement of the suspension. In Formula 1, the driver inputs are also recorded so that the team can assess driver performance and, in the case of an accident, the FIA can determine or rule out driver error as a possible cause.

motorsport telemetry windows application

In addition, there exist some series where “two way” telemetry is allowed. Two way telemetry suggests that engineers have the ability to update calibrations on the car in real time, possibly while it is out on the track. In Formula 1, two-way telemetry surfaced in the early nineties from TAG electronics, and consisted of a message display on the dashboard which the team could update. Its development continued until May 2001, at which point it was first allowed on the cars. By 2002 the teams were able to change engine mapping and deactivate particular engine sensors from the pits while the car was on track. For the 2003 season, the FIA banned two-way telemetry from Formula 1, however the technology still exists and could eventually find its way into other forms of racing or road cars.

In addition to that telemetry has also been applied to the use of Yacht racing. The technology was applied to the Oracle’s USA-76.