Archive for the ‘Gadgets’ Category

Raspberry Pi As a Cheap Home Surveillance System

Sunday, January 19th, 2014


Home surveillance systems are incredibly expensive, but if you’re looking for more of a DIY approach, Instructables user Scavix shows off how to build your own small-scale system for about $120 using a Raspberry Pi.

Scavix’s system uses a Raspberry Pi, the Raspberry Pi camera module, some housing for that camera, and a few other smaller pieces. After some set up, the end result is a home security system that can detect motion, broadcast a live stream, and more. It’s a surprisingly powerful system all things considered and it’s cheap enough that you can set up a few of them if you like.

Source: Instructables

$20 GPS/GLONASS/Beidou Receiver

Sunday, January 19th, 2014

GPS Module

Sticking a GPS module in a project has been a common occurrence for a while now, whether it be for a reverse geocache or for a drone telemetry system. These GPS modules are expensive, though, and they only listen in on GPS satellites – not the Russian GLONASS satellites or the Chinese Beidou satellites. NavSpark has the capability to listen to all these positioning systems, all while being an Arduino-compatible board that costs about $20.

Inside the NavSpark is a 32-bit microcontroller core (no, not ARM. LEON) with 1 MB of Flash 212kB of RAM, and a whole lot of horsepower. Tacked onto this core is a GPS unit that’s capable of listening in on GPS, GPS and GLONASS, or GPS and Beidou signals.

On paper, it’s an extremely impressive board for any application that needs any sort of global positioning and a powerful microcontroller. There’s also the option of using two of these boards and active antennas to capture carrier phase information, bringing the accuracy of this setup down to a few centimeters. Very cool, indeed.

Source: Hack A Day

A Whole-House Lighting System That Creates Its Own Energy

Sunday, August 4th, 2013

verve lighting switchWell, enegry is free. And, can be found anywhere. That’s what I’m aware of. Do you? 🙂

The energy harvested from physically moving the switches on Verve’s control panel is enough to transmit a radio signal as far as 300 feet to a central controller, which then relays the power to the individual hardwired lights or outlets. Enocean first developed the switches, that generate their own power via electro-dynamic generators linked to the movement of the light switches themselves.

The switch itself does not offer a status “on” or “off” light like some of the more expensive systems, but the central controller hubs, which are programmable, can give you a whole-house status report. The user can setup an unlimited number of scenes in minutes–each controller is networked to the other for total house lighting control from a single switch.

But the killer thing? You can tack the switch to almost any surface and move it without the need to pull wires and rip up your walls. The switch is basically just a remote control that lives anywhere you want it (within range of the controller that is). It is not silent but rather makes a solid click sound so you get feedback even if you don’t have status lights on the switch itself.

It’s an old concept, but it worth to be implemented.

Source: Green Dream

Links: Enocean, Verve Living System

Info: History of Light

Friday, November 23rd, 2012

Guys, herewith some brief information about history of light prepared by some friends at Q-Ray LED Lighting. As technologies evolves the light become more green (i mean, not the light is green in color. It’s more likely going with less and less carbon foot prints).
brief history of lights by QRay LED Lighting

Courtesy of Q-Ray LED Lighting

Hacking Home Automation Systems Through Power Lines

Saturday, August 13th, 2011



Quoted from

As home automation becomes more and more popular, hackers and security experts alike are turning their attention to these systems, to see just how (in)secure they are.

This week at DefCon, a pair of researchers demonstrated just how vulnerable home automation systems can be. Carrying out their research independently, [Kennedy] and [Rob Simon] came to the same conclusion – that manufacturers of this immature technology have barely spent any time or resources properly securing their wares.

The researchers built tools that focus on the X10 line of home automation products, but they also looked at ZWave, another commonly used protocol for home automation communications. They found that ZWare-based devices encrypted their conversations, but that the initial key exchange was done in the open, allowing any interested 3rd party to intercept the keys and decrypt the communications.

While you might initially assume that attacks are limited to the power lines within a single house, [Kennedy] says that the signals leak well beyond the confines of your home, and that he was able to intercept communications from 15 distinct systems in his neighborhood without leaving his house.

Can’t imagine how someone disturbing your private time while you’re enjoying your hot bath? think again. have a nice weekend.

Courtesy: Hackaday, Wired

A GPS without GPS

Monday, July 11th, 2011

gsmlocalizerWow, that sounds weird. It’s actually a mini GSM-based localizer without any GPS devices attached. It’s an old device with the cheaper SimCom module SIM900.  Here is a complete working GSM localizator which is pretty cheap and small too.

As introduction, this system allows localization without directly using GPS technology; we are able to locate the desired object fairly precisely by using database availability together with the geographic position of the cells themselves. In some country the cell coordinates are not publicly known (i.e. in Italy). If so, where do we find such data? Through Google Maps… Google has been able to store billions of data regarding the location of its clients’ cell phones. But how does GSM localization work? The radio mobile network is made up of a number of adjacent radio cells, each of which is characterized by an identifier consisting of four data: a progressive number (Cell ID), a code related to the area in which that given cell is (LAC, or Local Area Code), the code of national network to which the cell belongs (MCC, an acronym for  Mobile Country Code), and finally the company code (MNC, or Mobile Network Code), which obviously identifies the phone company itself. For this reason, once a cell name and coordinates are known, and considering the maximum distance allowed between this cell and a phone  before the phone connects to a new cell, it is possible to find out, approximately, the most distant position of the phone itself. For example, if the maximum distance has been determined to be one mile, the cell phone can be within a one-mile radius. It can be deduced that the more cells are found in a given area, the more precisely one can determine where the phone is located (up to 200-350 feet). The idea of employing only a GSM device to build a remote localization system occurred to us when we realized that Google Maps Mobile, which had been conceived to allow smartphones equipped with a GPS receiver to use Google for satellite navigation, was extended to all cell phones, as long as they were able to support GPRS or UMTS data.  Naturally, this method allows but for a rough estimate: determining the precise position of the cell phone hinges on data regarding the coverage of a given cell which can only be provided by the Google server.


The circuit

Compared to traditional localizers based on GPS, this device presents many advantages, primarily because it is lighter and less bulky, has a cost lesser and greater autonomy to exercise. This means that about one battery lithium ion, such as 1 Ah, our tracker can be in operation for several days (it all depends on the number of SMS that have to do). A locator based on cellular network may answare more immediately: the GPS receiver may take several minutes to determine its position. Our tracker works battery and thus can be brought on by people who may have the need to ask help or be tracked, but also placed on board motor vehicles (without installation) or simply introduced in goods in transit. To avoid unnecessarily draining the battery, the localizator provides its position via SMS, on requesto with a simple phone call. Among the functions implemented there is the SOS: By pressing the button the localizator sends a text message asking for help, containing the coordinates of position, the sending can be done to a maximum of eight thelephone numbers. When queried or with the autoreport function, sends an SMS with the localization.To know the location of remote device must send an SMS request cell is connected and sends a request (via GPRS) to Google’s site, the latter responds with the coordinates and the figure for the precision. Everything happens in seconds.


Well, you can get hell of these stuff from link provided afterward. Design files and the firmware are included. A fun stuff to experiment with at your disposal. Mini GSM localizer without GPS at

All images are courtesy of

Going cellular with your Arduino projects

Sunday, February 6th, 2011


It will be more interesting if we can get our projects connected, via wires or wirelessly. It can extend the functionality of the project itself. Here, i would like to share some useful stuff in order to add functionalities to your Arduino project.

You can add a huge measure of extensibility to a project by using a cellular connection. Anywhere the device can get service you can interact with it. In the past this has been a pretty deep slog through datasheets to get everything working, but this tutorial will show the basics of interacting with phone calls and text messages. It’s the 26th installment of what is becoming and mammoth Arduino series, and the first one in a set that works with the SM5100B cellular shield.

We love the words of warning at the top of the article which mention that a bit of bad code in your sketch could end up sending out a barrage of text messages, potentially costing you a bundle. But there’s plenty of details and if you follow along each step of the way we think you’ll come out fairly confident that you know what you’re doing. Just promise us that you won’t go out and steal SIM cards to use with your next project. Find part two of the tutorial here and keep your eyes open for future installments.

courtesy hackaday

GardenBot Is Monitoring Your Garden

Sunday, November 28th, 2010

how-to_module-map courtesy of

Amazing work, and very interesting solution (of an experience of nature-lovers and DIYers) to keep an eye on your garden:

GardenBot is a garden monitoring system. This means that you put sensors in your garden, and GardenBot will show you charts of the conditions in your garden — so you can see the world the way your plants see it.

I did… er, I mean hi. My name is Andrew Frueh. Me and my wife, Melissa, like to garden a lot. We’re always experimenting with different methods in our garden and compost. We already were using a soaker hose for our garden. Last year, we used one of those mechanical timers to turn the soaker on for a pre-determined amount of time. But then…
I discovered Arduino, and immediately became engrossed. Arduino is a little computer (called a microcontroller) about the size of a business card. It has a bunch of analog and digital inputs/outputs so you can hook up various sensors, buttons, switches, audio/video devices — it’s pretty friggin’ cool. See the parts page for more information.
Anyway, considering my interests, I thought “gee, it sure would be neat to use the Arduino board to control the watering in the garden”. But then one thing led to another… and now we get to the (somewhat complete) GardenBot system that you have before you.
Like a lot of DIY-ers, I am entirely self-trained. So, there are a lot of holes in my knowledge. As I hunted around for information on the web, I found that too often the information in various tutorials was written by someone who failed to remember that lay-people (incidentally the target audience for any tutorial) don’t know the jargon, and therefor can have great difficulty in decoding the information. One of my goals with this project, is to have all the pieces laid out in plain language — step by step — to walk you through the whole process. Hopefully I pull that off.

check out the web, as all the resources and methods are well documented. Good job!


Car eye-tracking system wakes you before you crash

Sunday, November 28th, 2010


Falling asleep while at the helm of a few tons of metal and plastic going 60 miles-per-hour doesn’t end well, but there’s little the modern car can do about it. If it, say, stopped itself suddenly it could become a hazard to other drivers. The Eyetracker system knows it’s not on the car, though — it’s on you to drive safe.

With that in mind, the German-based Eyetracker watches the driver’s face for telltale signs of sleepiness, and issues a warning if it looks like you’re about to doze off. The system uses two cameras to keep tabs on the spatial positioning of the pupil and the line of vision — which would waver if you’re about to pass out. In other words, it makes sure your eyes are on the road.

What’s really exciting here is how small and easy to install the system is, which could see it put to use in ways other than keeping drivers awake (a noble cause, to be sure). Despite the picture above, the Eyetracker doesn’t need a laptop to function, and its control unit is the size of a matchbox. What’s more, it can be installed in any car as it handles all of its own processing itself.

Beyond just the automobile world, the Eyetacker could aid in medical operations where being able to keep on eye on — well — an eye is essential, or even in video games, serving as a head-tracker that lets the player look around without the aid of a physical controller.

Source: Fraunhofer

Wirelessly Automate Your Home

Sunday, November 14th, 2010


I’ve stumbled across this quite simple idea of home automation using Wifi. [Mrx23] combined OpenWRT, a microcontroller, and a set of RF controlled outlet switches to add automation to his plug-in devices. An RF remote that controls the switched outlets has been connected to an Arduino. The router communicates with the Arduino via a serial connection. And the router is controlled by a web interface which means you can use a smartphone or other web device to control the outlets.

The best thing about this system is the power that the router wields. Since it has an underlying Linux kernel you have the option of setting CRON jobs to turn lighting on and off, and group settings can be established to set up a room’s lighting level for watching movies, hosting guests, etc. Combine this with the fact that OpenWRT can use port forwarding for Internet control and the possibilities really start to open up.

Courtesy Mrx23 at