Archive for the ‘Humanities & Issues’ Category

Israeli Drone Pilots Made Their Life-and-Death Choices Over Gaza, and how?

Saturday, November 24th, 2012

A Heron drone at the Palmahim air base in Israel in December of 2011. Photo: AP/Dan Balilty

The latest round of fighting between Israel and Hamas has settled into an uneasy ceasefire. But that won’t stop Israel’s drones from filling the skies over Gaza. In this 2009 story, written during the final days of the last Israel-Hamas  conflict, we took a look at how one drone pilot grappled with the moral choices that came with remotely spying, and ordering death, from above.

Life or Death choices will never been easier with judgement done through small screen. how these guys, manage doing these task properly or most importantly humanly. Guess, wired have this story covered here. Come on, take a look.

Courtesy: Wired.com

 

Info: History of Light

Friday, November 23rd, 2012

Guys, herewith some brief information about history of light prepared by some friends at Q-Ray LED Lighting. As technologies evolves the light become more green (i mean, not the light is green in color. It’s more likely going with less and less carbon foot prints).
brief history of lights by QRay LED Lighting

Courtesy of Q-Ray LED Lighting

International Greentech & Eco Products Exhibition & Conference Malaysia 2012

Friday, October 12th, 2012

It has been a while (quite long actually),  I haven’t post anything here. I’ve stumbled upon this video on Youtube which is apparently gave me some ideas to continue posting some articles around Green Technologies.

International Greentech & Eco Products Exhibition & Conference Malaysia — at KL Convention Center (KLCC).

So, some quick researches lead me to 3rd International Greentech & Eco Products Exhibition & Conference Malaysia — currently being held at KL Convention Center (KLCC). Without any further thoughts, I will be there today to do some researches.

So, stay tune buddy. I’ll post some stuff as soon as tonight. Well, tonight is Friday night, maybe tomorrow. 🙂

Enjoy this video & happy TGIF:

Links:

GPS Units Disable Themselves If They Go Faster Than 1,200 MPH

Saturday, August 13th, 2011

This is somehow a legacy border, but anyone out there have busted this fact? – GPS units disable themselves if they go faster than 1,200 mph and if they go above 60,000 feet…

GPS module

In GPS technology, the phrasing “COCOM Limits” is also used to refer to a limit placed to GPS tracking devices that should disable tracking when the device realizes itself to be moving faster than 1,000 knots (1,900 km/h; 1,200 mph) at an altitude higher than 60,000 feet (18,000 m).This was intended to avoid the use of GPS in intercontinental ballistic missile-like applications.

Some manufacturers apply this limit literally (disable when both limits are reached), other manufacturers disable tracking when a single limit is reached.

This limit is a frequent obstacle encountered, if not discussed, among hobbyists seeking to make high altitude balloons and of course would be a problem for homemade space programs.

courtesy: wikipedia

Hacking Home Automation Systems Through Power Lines

Saturday, August 13th, 2011



 

X10-Jammer.png

Quoted from Hackaday.com

As home automation becomes more and more popular, hackers and security experts alike are turning their attention to these systems, to see just how (in)secure they are.

This week at DefCon, a pair of researchers demonstrated just how vulnerable home automation systems can be. Carrying out their research independently, [Kennedy] and [Rob Simon] came to the same conclusion – that manufacturers of this immature technology have barely spent any time or resources properly securing their wares.

The researchers built tools that focus on the X10 line of home automation products, but they also looked at ZWave, another commonly used protocol for home automation communications. They found that ZWare-based devices encrypted their conversations, but that the initial key exchange was done in the open, allowing any interested 3rd party to intercept the keys and decrypt the communications.

While you might initially assume that attacks are limited to the power lines within a single house, [Kennedy] says that the signals leak well beyond the confines of your home, and that he was able to intercept communications from 15 distinct systems in his neighborhood without leaving his house.

Can’t imagine how someone disturbing your private time while you’re enjoying your hot bath? think again. have a nice weekend.

Courtesy: Hackaday, Wired

Japan setting out to get its own GPS off the ground

Sunday, July 3rd, 2011

japan-gps.jpgHow’s your Sunday? ah-ha, here some GPS-related article for your weekend technological feed, have a nice weekend.

The Japanese government – with the the assistance of private firms – is ramping up research on a Japanese version of the Global Positioning System in a bid to turn satellite-based technologies into a key export, the Nikkei reports. As far as we know,  it’s already runs. But turning it into an export – is really a good idea to me.

Plans are afoot to conduct joint research and development on this – nine firms and two organisations are slated to participate in a study group to be formed by the Ministry of Economy, Trade and Industry at the end of the month, with an aim to come up with new services in five years, the report says.

The venture will include companies such as NEC and Mitsubishi Electric Corp, which develop satellites or ground facilities, as well as those with a broad range of businesses, including transport systems, logistics and machinery.Having launched a quasi-zenith positioning satellite last September, the addition of two or three more satellites will enable an around-the-clock service, though specific plans for the second satellite haven’t been drawn up yet.

The Japanese satellite system is designed to supplement the GPS currently operated by the US, and is meant to cover the region, including that of Southeast Asia and Australia.A domestic GPS would yield many benefits beyond just making and launching satellites – with a projection that the overall market will grow from around four trillion yen in 2008 to roughly 10 trillion yen in 2013, a wide range of infrastructure-related fields will stand to grow as well.

Courtesy: paultan

Related:  Quasi-Zenith Satellite System, QZSS

How Earthquake and Tsunami Warning Systems Work

Sunday, March 13th, 2011

seismic flowchart

How Earthquake and Tsunami Warning Systems? — Earthquake and tsunami warning systems both monitor the same thing: seismic waves. Seismic data takes the Earth’s pulse directly, so when the earth shakes, we get immediate feedback. If all goes well, we have enough time to run.
Lots of organizations watch for earth movement. The U.S.’s Advanced National Seismic System (ANSS), for instance, runs 95 stations across North America. When there’s an earthquake, ANSS sends out a signal in real time, which alerts government agencies and emergency response personnel.
Earthquakes on land are serious business, to be sure, but responding to them is fairly straightforward: Direct the appropriate resources to the place where the alarm bell rang the loudest. But when earthquakes cause tsunamis, an international effort is usually required. Think about it: An earthquake under the sea doesn’t just cause a killer wave directly above it. Landmasses shift, water is displaced, and, depending on several other factors, it could end up anywhere.
Seismic waves travel 100 times faster than ocean waves, so you have to take the Earth’s movement into account to figure out when the wall of water will hit land. To understand just how important it is to use seismic data to get people safe, you only need to look back to the magnitude-9.0 Indonesian quake of 2004. The Indian Ocean had no early warning system in place, and the tsunami triggered by the earthquake killed 200,000 people in eleven countries—including 30,000 people in Sri Lanka, 1000 miles away from the epicenter. Information just didn’t get to the people who needed it fast enough.
But today, when the 8.9 hit, the Japan Meteorological Agency issued a major tsunami warning within three minutes of the event. Six minutes after that, Islands in the South pacific, Hawaii and Russia were told to watch their shores. The collaborating systems are a part of the Intergovernmental Oceanographic Commission run by UNESCO, which organizes international disaster response.
Japan is hyperaware of its shaky ground. The country withstands some thousand tremors a year, and they’ve got 180 seismographs and 600 seismic intensity meters constantly tuned to what’s going on in the underworld. They also have around 30 sea level gauges operated by the coast guard and around 80 operated by the JMA that work in chorus to provide feedback to a Data Processing and Communication system. The sensors take a reading, upload it to a central processing system using old fashioned wires and/or satellite uplink, and that central system sends updates to the government, police, coast guard, telephone companies, and the media. Sea level gauges also report disturbances in real time and help organizations model trajectory and size of the oncoming waves.
And then there are more specialized tools. The NOAA, for instance, has a handful of tsunami detection buoys that help rule out false alarms and give monitoring agencies a better idea of what they’re in for-or what their not. NOAA’s Deep Ocean Assessment and Reporting of Tsunami system—which goes by the slick moniker ‘DART’—is made up of an anchored sea floor bottom pressure recorder and accompanying fiberglass and foam buoy on the surface. The recorder on the ocean floor, which takes a note of temperature and pressure every 15 seconds, sends data via an acoustic link to the surface buoy. The buoy then sends information by satellite to Tsunami warning centers.
How does the information get to you? Warning systems coordinate with the media. That’s how you got the information on your front page. To get even faster info, in many places you can sign up for text alerts if something disastrous is happening-or will happen, in the case of a tsunami-in your area.

courtesy: gizmodo

A brief about Smart Home

Thursday, October 14th, 2010

Smart Home is an intelligent and easy-to-use home management system that offers a richer set of home services by allowing appliances to interact with each other seamlessly. Capabilities of appliances are used as “Lego Kits” that can be mixed and matched to provide different home services for security, well-being, energy management and entertainment.

  • Built upon open communication UPnP standards.
  • “Lego Kits” to provide services to the home user.
  • A single user interface to manage appliances and customize home services.

Brief Introduction
The Smart Home project’s objective is to develop a reference implementation of a smart home system. This implementation utilities the Uninersal Plug n Play (UPnP) standard that has been adopted by major consumer electronic (CE) manufacturers as the emerging standard for device interoperability.

UPnP is an open standard (www.upnp.org) and its adoption by the CE industry consortium such as the Digital Living Network Alliance (DLNA) (www.dlna.org) augurs well for the end consumer. Home solutions (devices, system etc) will no longer be stovepipe (proprietary, single brand) in nature, as an open standard will ensure a common playing field and consumers will be free to choose amongst the various brand offerings.

Motivation
The following set of current problems/opportunities form the basis of the motivation underlying this project.

  • Devices are standalone in nature and typically do not communicate with other devices.
  • Due to the above (1), devices cannot cooperate/collaborate to jointly provide a richer set of services to the consumer.
  • Devices are difficult to setup and configure.
  • Even if (3) was made simple, it is difficult to pair devices and provision services.
  • Home networks are becoming more pervasive. Such networks are not just confined to ICT equipments (computers, printers, access point etc). Typical home devices/equipment such as lamps, stereo set, television etc will be part of the home network.

IBM research on network of earthquake detector and locator

Wednesday, September 22nd, 2010

Computer servers in data centers could do more than respond to requests from millions of internet users. IBM researchers have patented a technique using vibration sensors inside server hard drives to analyze information about earthquakes and predict tsunamis.

“Almost all hard drives have an accelerometer built into them, and all of that data is network-accessible,” says Bob Friedlander, master inventor at IBM. “If we can reach in, grab the data, clean it, network it and analyze it, we can provide very fine-grained pictures of what’s happening in an earthquake.”

The aim is to accurately predict the location and timing of catastrophic events and improve the natural-disaster warning system. Seismographs that are widely used currently do not provide fine-grained data about where emergency response is needed, say the researchers. IBM’s research is not the first time scientists have tried to use the sensors in computers to detect earthquakes.

Seismologists at the University of California at Riverside and Stanford University created the Quake Catcher Network in 2008. The idea was to use the accelerometers in laptops to detect movement. But wading through mounds of data from laptops to accurately point to information that might indicate seismic activity is not easy. For instance, how do you tell if the vibrations in a laptop accelerometer are the result of seismic activity and not a big-rig truck rolling by? That’s why IBM researchers Friedlander and James Kraemer decided to focus on using rack-mounted servers.

“When you are looking at data from a rack that’s bolted to the floor, it’s not the same as what you get from a laptop,” says Kraemer. “Laptops produce too much data and it’s liable to have a lot of noise.”Servers in data centers can help researchers get detailed information because they know the machine’s orientation, its environmental conditions are much better controlled, and the noise generated by the device tends to be predictable. (more…)

Brilliant SCADA System that failed

Sunday, September 19th, 2010

A friend of mine shared an article about software failures. it’s a good stuff to read, where we can avoid some mistakes that previously been made by software developers. there is a SCADA software there – some of the problems that I’ve been encountered too in my life. check this out:

http://images.nakedmaya.com/Troll-Link1-sm.jpgNet-Herald – a monitoring application for water supply companies. It was a complex client server application that would receive monitoring data from specialized hardware and store that data inside a SQL database. The client displays that data in different graphs, provides printable reports or sends alarm messages via SMS if a monitored value is not within its specified limits. I developed Net-Herald as a perfect fit for that specialized hardware that is provided by a local manufacturer. That way, so I hoped, I could profit from their sales leads and would find a smoother way into these water supply companies. The downside of course, was that my software would only work with their hardware. (more…)