Archive for the ‘software’ Category

Israeli Drone Pilots Made Their Life-and-Death Choices Over Gaza, and how?

Saturday, November 24th, 2012

A Heron drone at the Palmahim air base in Israel in December of 2011. Photo: AP/Dan Balilty

The latest round of fighting between Israel and Hamas has settled into an uneasy ceasefire. But that won’t stop Israel’s drones from filling the skies over Gaza. In this 2009 story, written during the final days of the last Israel-Hamas  conflict, we took a look at how one drone pilot grappled with the moral choices that came with remotely spying, and ordering death, from above.

Life or Death choices will never been easier with judgement done through small screen. how these guys, manage doing these task properly or most importantly humanly. Guess, wired have this story covered here. Come on, take a look.



A GPS without GPS

Monday, July 11th, 2011

gsmlocalizerWow, that sounds weird. It’s actually a mini GSM-based localizer without any GPS devices attached. It’s an old device with the cheaper SimCom module SIM900.  Here is a complete working GSM localizator which is pretty cheap and small too.

As introduction, this system allows localization without directly using GPS technology; we are able to locate the desired object fairly precisely by using database availability together with the geographic position of the cells themselves. In some country the cell coordinates are not publicly known (i.e. in Italy). If so, where do we find such data? Through Google Maps… Google has been able to store billions of data regarding the location of its clients’ cell phones. But how does GSM localization work? The radio mobile network is made up of a number of adjacent radio cells, each of which is characterized by an identifier consisting of four data: a progressive number (Cell ID), a code related to the area in which that given cell is (LAC, or Local Area Code), the code of national network to which the cell belongs (MCC, an acronym for  Mobile Country Code), and finally the company code (MNC, or Mobile Network Code), which obviously identifies the phone company itself. For this reason, once a cell name and coordinates are known, and considering the maximum distance allowed between this cell and a phone  before the phone connects to a new cell, it is possible to find out, approximately, the most distant position of the phone itself. For example, if the maximum distance has been determined to be one mile, the cell phone can be within a one-mile radius. It can be deduced that the more cells are found in a given area, the more precisely one can determine where the phone is located (up to 200-350 feet). The idea of employing only a GSM device to build a remote localization system occurred to us when we realized that Google Maps Mobile, which had been conceived to allow smartphones equipped with a GPS receiver to use Google for satellite navigation, was extended to all cell phones, as long as they were able to support GPRS or UMTS data.  Naturally, this method allows but for a rough estimate: determining the precise position of the cell phone hinges on data regarding the coverage of a given cell which can only be provided by the Google server.


The circuit

Compared to traditional localizers based on GPS, this device presents many advantages, primarily because it is lighter and less bulky, has a cost lesser and greater autonomy to exercise. This means that about one battery lithium ion, such as 1 Ah, our tracker can be in operation for several days (it all depends on the number of SMS that have to do). A locator based on cellular network may answare more immediately: the GPS receiver may take several minutes to determine its position. Our tracker works battery and thus can be brought on by people who may have the need to ask help or be tracked, but also placed on board motor vehicles (without installation) or simply introduced in goods in transit. To avoid unnecessarily draining the battery, the localizator provides its position via SMS, on requesto with a simple phone call. Among the functions implemented there is the SOS: By pressing the button the localizator sends a text message asking for help, containing the coordinates of position, the sending can be done to a maximum of eight thelephone numbers. When queried or with the autoreport function, sends an SMS with the localization.To know the location of remote device must send an SMS request cell is connected and sends a request (via GPRS) to Google’s site, the latter responds with the coordinates and the figure for the precision. Everything happens in seconds.


Well, you can get hell of these stuff from link provided afterward. Design files and the firmware are included. A fun stuff to experiment with at your disposal. Mini GSM localizer without GPS at

All images are courtesy of

GardenBot Is Monitoring Your Garden

Sunday, November 28th, 2010

how-to_module-map courtesy of

Amazing work, and very interesting solution (of an experience of nature-lovers and DIYers) to keep an eye on your garden:

GardenBot is a garden monitoring system. This means that you put sensors in your garden, and GardenBot will show you charts of the conditions in your garden — so you can see the world the way your plants see it.

I did… er, I mean hi. My name is Andrew Frueh. Me and my wife, Melissa, like to garden a lot. We’re always experimenting with different methods in our garden and compost. We already were using a soaker hose for our garden. Last year, we used one of those mechanical timers to turn the soaker on for a pre-determined amount of time. But then…
I discovered Arduino, and immediately became engrossed. Arduino is a little computer (called a microcontroller) about the size of a business card. It has a bunch of analog and digital inputs/outputs so you can hook up various sensors, buttons, switches, audio/video devices — it’s pretty friggin’ cool. See the parts page for more information.
Anyway, considering my interests, I thought “gee, it sure would be neat to use the Arduino board to control the watering in the garden”. But then one thing led to another… and now we get to the (somewhat complete) GardenBot system that you have before you.
Like a lot of DIY-ers, I am entirely self-trained. So, there are a lot of holes in my knowledge. As I hunted around for information on the web, I found that too often the information in various tutorials was written by someone who failed to remember that lay-people (incidentally the target audience for any tutorial) don’t know the jargon, and therefor can have great difficulty in decoding the information. One of my goals with this project, is to have all the pieces laid out in plain language — step by step — to walk you through the whole process. Hopefully I pull that off.

check out the web, as all the resources and methods are well documented. Good job!


Wirelessly Automate Your Home

Sunday, November 14th, 2010


I’ve stumbled across this quite simple idea of home automation using Wifi. [Mrx23] combined OpenWRT, a microcontroller, and a set of RF controlled outlet switches to add automation to his plug-in devices. An RF remote that controls the switched outlets has been connected to an Arduino. The router communicates with the Arduino via a serial connection. And the router is controlled by a web interface which means you can use a smartphone or other web device to control the outlets.

The best thing about this system is the power that the router wields. Since it has an underlying Linux kernel you have the option of setting CRON jobs to turn lighting on and off, and group settings can be established to set up a room’s lighting level for watching movies, hosting guests, etc. Combine this with the fact that OpenWRT can use port forwarding for Internet control and the possibilities really start to open up.

Courtesy Mrx23 at

DIY Arduino water meter with iPad display

Saturday, November 6th, 2010

TEAGUE Give Water from TEAGUE on Vimeo.

It’s another arduino stuff to be working on here. All related references are included:

Some of the folks over at Teague Labs have been noodling around with measuring water consumption. They’ve built a graphing water meter using a YellowJacket Arduino board with built-in WiFi and coolant flow meter from a PC cooling system to see how they used water around the office. Water conservation is major concern in many areas around the world. Tools that allow us to observe and correct our behaviors help us towards a path to sustainability. Schematics and source code are available if you want to try it out for yourself.

courtesy: Adam

It’s an Arduino-based speed detector

Saturday, November 6th, 2010

Flash / Arduino Based Speed Detector from Mike Chambers on Vimeo.

Mike Chambers built this excellent looking arduino-based speed detector. An Arduino measures the time it takes an object to travel between two points, which is then relayed back to a computer (or smart phone), where it is converted into average speed and presented in a clear manner. The concept for the project is simple, however he wins big points for putting it all together into a working package.

courtesy: Arduino Blog

A brief about Smart Home

Thursday, October 14th, 2010

Smart Home is an intelligent and easy-to-use home management system that offers a richer set of home services by allowing appliances to interact with each other seamlessly. Capabilities of appliances are used as “Lego Kits” that can be mixed and matched to provide different home services for security, well-being, energy management and entertainment.

  • Built upon open communication UPnP standards.
  • “Lego Kits” to provide services to the home user.
  • A single user interface to manage appliances and customize home services.

Brief Introduction
The Smart Home project’s objective is to develop a reference implementation of a smart home system. This implementation utilities the Uninersal Plug n Play (UPnP) standard that has been adopted by major consumer electronic (CE) manufacturers as the emerging standard for device interoperability.

UPnP is an open standard ( and its adoption by the CE industry consortium such as the Digital Living Network Alliance (DLNA) ( augurs well for the end consumer. Home solutions (devices, system etc) will no longer be stovepipe (proprietary, single brand) in nature, as an open standard will ensure a common playing field and consumers will be free to choose amongst the various brand offerings.

The following set of current problems/opportunities form the basis of the motivation underlying this project.

  • Devices are standalone in nature and typically do not communicate with other devices.
  • Due to the above (1), devices cannot cooperate/collaborate to jointly provide a richer set of services to the consumer.
  • Devices are difficult to setup and configure.
  • Even if (3) was made simple, it is difficult to pair devices and provision services.
  • Home networks are becoming more pervasive. Such networks are not just confined to ICT equipments (computers, printers, access point etc). Typical home devices/equipment such as lamps, stereo set, television etc will be part of the home network.

TeenyChron: A Linux-based GPS-synched NTP server

Sunday, September 26th, 2010


The genesis of this clock stems from one of my other hobbies, Ham Radio. I wanted a reasonably accurate clock that would display both local and UTC time on a large LED display. Everything I could find missed the mark by at least one feature. So I set out to design a clock with the above features, and also with the additional feature of being a stratum one NTP time Server, that is synchronized to a GPS’s pulse per second (PPS) signal.

At the heart of the system I am using a small single board computer based upon an ARM processor running Linux. I actually purchased the board in 2006 for another undertaking that is still in my long list of projects. The TS-7400 Computer-on-Module is built and sold by Technologic Systems. In the configuration I bought the SBC I paid $155 for a single unit. Mine has 64MB of RAM, 32MB of Flash, a battery backed up real time clock (RTC), and runs a 200Mhz ARM processor. I’ve configured the board to boot and mount a file system from a 2Gig SD card. I love this board! It runs a full version of Debian Linux. To date, every standard software package I’ve loaded complies and runs without any trouble.

courtesy of TeenyChron

Brilliant SCADA System that failed

Sunday, September 19th, 2010

A friend of mine shared an article about software failures. it’s a good stuff to read, where we can avoid some mistakes that previously been made by software developers. there is a SCADA software there – some of the problems that I’ve been encountered too in my life. check this out: – a monitoring application for water supply companies. It was a complex client server application that would receive monitoring data from specialized hardware and store that data inside a SQL database. The client displays that data in different graphs, provides printable reports or sends alarm messages via SMS if a monitored value is not within its specified limits. I developed Net-Herald as a perfect fit for that specialized hardware that is provided by a local manufacturer. That way, so I hoped, I could profit from their sales leads and would find a smoother way into these water supply companies. The downside of course, was that my software would only work with their hardware. (more…)

Build a 9-digit Pulse Counter for under $20

Sunday, May 2nd, 2010


Roughly, at $20 to build? This 9 digit pulse counter is an excellent example of home built tools. Josh, the builder found himself repairing a device and in need of a pulse counter. With the components cheaply available, he just built his own. He says that it has a few limitations, like display brightness, but overall it seems to do the job well. All the stuffs, steps and even PCB can be downloaded from his site at your own will.

Courtesy of Imsolidstate