Archive for the ‘Security’ Category

Raspberry Pi As a Cheap Home Surveillance System

Sunday, January 19th, 2014

CCTV

Home surveillance systems are incredibly expensive, but if you’re looking for more of a DIY approach, Instructables user Scavix shows off how to build your own small-scale system for about $120 using a Raspberry Pi.

Scavix’s system uses a Raspberry Pi, the Raspberry Pi camera module, some housing for that camera, and a few other smaller pieces. After some set up, the end result is a home security system that can detect motion, broadcast a live stream, and more. It’s a surprisingly powerful system all things considered and it’s cheap enough that you can set up a few of them if you like.

Source: Instructables

Israeli Drone Pilots Made Their Life-and-Death Choices Over Gaza, and how?

Saturday, November 24th, 2012

A Heron drone at the Palmahim air base in Israel in December of 2011. Photo: AP/Dan Balilty

The latest round of fighting between Israel and Hamas has settled into an uneasy ceasefire. But that won’t stop Israel’s drones from filling the skies over Gaza. In this 2009 story, written during the final days of the last Israel-Hamas  conflict, we took a look at how one drone pilot grappled with the moral choices that came with remotely spying, and ordering death, from above.

Life or Death choices will never been easier with judgement done through small screen. how these guys, manage doing these task properly or most importantly humanly. Guess, wired have this story covered here. Come on, take a look.

Courtesy: Wired.com

 

GPS Units Disable Themselves If They Go Faster Than 1,200 MPH

Saturday, August 13th, 2011

This is somehow a legacy border, but anyone out there have busted this fact? – GPS units disable themselves if they go faster than 1,200 mph and if they go above 60,000 feet…

GPS module

In GPS technology, the phrasing “COCOM Limits” is also used to refer to a limit placed to GPS tracking devices that should disable tracking when the device realizes itself to be moving faster than 1,000 knots (1,900 km/h; 1,200 mph) at an altitude higher than 60,000 feet (18,000 m).This was intended to avoid the use of GPS in intercontinental ballistic missile-like applications.

Some manufacturers apply this limit literally (disable when both limits are reached), other manufacturers disable tracking when a single limit is reached.

This limit is a frequent obstacle encountered, if not discussed, among hobbyists seeking to make high altitude balloons and of course would be a problem for homemade space programs.

courtesy: wikipedia

Hacking Home Automation Systems Through Power Lines

Saturday, August 13th, 2011



 

X10-Jammer.png

Quoted from Hackaday.com

As home automation becomes more and more popular, hackers and security experts alike are turning their attention to these systems, to see just how (in)secure they are.

This week at DefCon, a pair of researchers demonstrated just how vulnerable home automation systems can be. Carrying out their research independently, [Kennedy] and [Rob Simon] came to the same conclusion – that manufacturers of this immature technology have barely spent any time or resources properly securing their wares.

The researchers built tools that focus on the X10 line of home automation products, but they also looked at ZWave, another commonly used protocol for home automation communications. They found that ZWare-based devices encrypted their conversations, but that the initial key exchange was done in the open, allowing any interested 3rd party to intercept the keys and decrypt the communications.

While you might initially assume that attacks are limited to the power lines within a single house, [Kennedy] says that the signals leak well beyond the confines of your home, and that he was able to intercept communications from 15 distinct systems in his neighborhood without leaving his house.

Can’t imagine how someone disturbing your private time while you’re enjoying your hot bath? think again. have a nice weekend.

Courtesy: Hackaday, Wired

How Earthquake and Tsunami Warning Systems Work

Sunday, March 13th, 2011

seismic flowchart

How Earthquake and Tsunami Warning Systems? — Earthquake and tsunami warning systems both monitor the same thing: seismic waves. Seismic data takes the Earth’s pulse directly, so when the earth shakes, we get immediate feedback. If all goes well, we have enough time to run.
Lots of organizations watch for earth movement. The U.S.’s Advanced National Seismic System (ANSS), for instance, runs 95 stations across North America. When there’s an earthquake, ANSS sends out a signal in real time, which alerts government agencies and emergency response personnel.
Earthquakes on land are serious business, to be sure, but responding to them is fairly straightforward: Direct the appropriate resources to the place where the alarm bell rang the loudest. But when earthquakes cause tsunamis, an international effort is usually required. Think about it: An earthquake under the sea doesn’t just cause a killer wave directly above it. Landmasses shift, water is displaced, and, depending on several other factors, it could end up anywhere.
Seismic waves travel 100 times faster than ocean waves, so you have to take the Earth’s movement into account to figure out when the wall of water will hit land. To understand just how important it is to use seismic data to get people safe, you only need to look back to the magnitude-9.0 Indonesian quake of 2004. The Indian Ocean had no early warning system in place, and the tsunami triggered by the earthquake killed 200,000 people in eleven countries—including 30,000 people in Sri Lanka, 1000 miles away from the epicenter. Information just didn’t get to the people who needed it fast enough.
But today, when the 8.9 hit, the Japan Meteorological Agency issued a major tsunami warning within three minutes of the event. Six minutes after that, Islands in the South pacific, Hawaii and Russia were told to watch their shores. The collaborating systems are a part of the Intergovernmental Oceanographic Commission run by UNESCO, which organizes international disaster response.
Japan is hyperaware of its shaky ground. The country withstands some thousand tremors a year, and they’ve got 180 seismographs and 600 seismic intensity meters constantly tuned to what’s going on in the underworld. They also have around 30 sea level gauges operated by the coast guard and around 80 operated by the JMA that work in chorus to provide feedback to a Data Processing and Communication system. The sensors take a reading, upload it to a central processing system using old fashioned wires and/or satellite uplink, and that central system sends updates to the government, police, coast guard, telephone companies, and the media. Sea level gauges also report disturbances in real time and help organizations model trajectory and size of the oncoming waves.
And then there are more specialized tools. The NOAA, for instance, has a handful of tsunami detection buoys that help rule out false alarms and give monitoring agencies a better idea of what they’re in for-or what their not. NOAA’s Deep Ocean Assessment and Reporting of Tsunami system—which goes by the slick moniker ‘DART’—is made up of an anchored sea floor bottom pressure recorder and accompanying fiberglass and foam buoy on the surface. The recorder on the ocean floor, which takes a note of temperature and pressure every 15 seconds, sends data via an acoustic link to the surface buoy. The buoy then sends information by satellite to Tsunami warning centers.
How does the information get to you? Warning systems coordinate with the media. That’s how you got the information on your front page. To get even faster info, in many places you can sign up for text alerts if something disastrous is happening-or will happen, in the case of a tsunami-in your area.

courtesy: gizmodo

Emergency Kiosks – Penang Island, Malaysia

Sunday, March 13th, 2011
Police Emergency Kiosks

Police Emergency Kiosks

Complete end-to-end IP video technology is behind an integrated public safety system on Penang Island, the most populated of Malaysia’s islands. Its capital, Georgetown, attracts many tourists and, as with other city centers around the world, it faces a complex security environment, including criminal activity and traffic issues.
The surveillance project consists of 31 PTZ dome cameras connected via a wireless IP network monitoring the whole of the Georgetown area. The cameras are focused on crime and traffic hot spots such as tourist areas, banks, petrol stations, traffic intersections and commercial centers.
The integration features of the IP video solution allowed a number of emergency kiosks to be installed in tourist areas. Using a transmitter/receiver module, which can transmit high-quality video and audio as well as digital input/output, a standalone video intercom solution for the kiosks was developed. When a member of the public activates the emergency button, two-way communication is opened up with one of the control room operators via a hidden microphone and camera in the kiosk. The intercom video from the kiosk automatically displays on a video management workstation and the nearest PTZ is panned and zoomed to the kiosk area. This is all achieved over the wireless network. The only cabling required is power to each of the kiosks. The PTZ domes are also connected to transmitter modules and the audio capability is used to provide public announcement facilities through speakers mounted with each camera.

Courtesy: Asmag.com

Smart Building Category

Sunday, October 24th, 2010

building.jpg

As for me this category is going to be my future project, so I would like to add this as a new category. I think, it would be more convenient to access all home and building automation related articles by this unique category. And as been mentioned in previous post, Home automation, a buzz word? This category will covers articles related as follows:

  • efficient energy management
  • security and surveilance
  • news and entertainment
  • drainage and watering monitoring system
  • alternative energy

A brief about Smart Home

Thursday, October 14th, 2010

Smart Home is an intelligent and easy-to-use home management system that offers a richer set of home services by allowing appliances to interact with each other seamlessly. Capabilities of appliances are used as “Lego Kits” that can be mixed and matched to provide different home services for security, well-being, energy management and entertainment.

  • Built upon open communication UPnP standards.
  • “Lego Kits” to provide services to the home user.
  • A single user interface to manage appliances and customize home services.

Brief Introduction
The Smart Home project’s objective is to develop a reference implementation of a smart home system. This implementation utilities the Uninersal Plug n Play (UPnP) standard that has been adopted by major consumer electronic (CE) manufacturers as the emerging standard for device interoperability.

UPnP is an open standard (www.upnp.org) and its adoption by the CE industry consortium such as the Digital Living Network Alliance (DLNA) (www.dlna.org) augurs well for the end consumer. Home solutions (devices, system etc) will no longer be stovepipe (proprietary, single brand) in nature, as an open standard will ensure a common playing field and consumers will be free to choose amongst the various brand offerings.

Motivation
The following set of current problems/opportunities form the basis of the motivation underlying this project.

  • Devices are standalone in nature and typically do not communicate with other devices.
  • Due to the above (1), devices cannot cooperate/collaborate to jointly provide a richer set of services to the consumer.
  • Devices are difficult to setup and configure.
  • Even if (3) was made simple, it is difficult to pair devices and provision services.
  • Home networks are becoming more pervasive. Such networks are not just confined to ICT equipments (computers, printers, access point etc). Typical home devices/equipment such as lamps, stereo set, television etc will be part of the home network.

Home automation, a buzz word?

Friday, September 17th, 2010

Doing my routine jobs at my workplace, I stumbled upon some articles regarding home automation. It’s an old stuff actually, but I’m sure it will be interesting to read. I’ll share it later with you guys. It’ll be a busy weekend gathering enough points for this issue. There are some criterias to be covered when talking about home automation:

  • efficient energy management
  • security and surveilance
  • news and entertainment
  • drainage and watering monitoring system
  • alternative energy

If you have any other ideas, that some stuff are related to this issue. Just tweet it to me: @diblos

Modem used in an alarm system

Sunday, August 29th, 2010

ORP Systems

This alarm system senses motion and then alerts you by phone. And this fellow, [Oscar] had an old external modem sitting around and, with some wise hardware choices, he came up with a simple circuit to use it. First up is the PIC 16F628A chosen because it doesn’t require an external crystal. This connects with the modem via a DS275 RS232 transceiver because it requires no external parts for connection. The final portion of the puzzle is a PIR sensor that triggers a pin interrupt in the sleeping PIC, which then dials your number to alert you. It doesn’t look like anything happens other than your phone ringing, but that’s enough for a simple system. We’re glad to see how easy it was to use that modem… time to go hunting for one in dreaded junk trunk. Don’t miss the clip after the break.

What you can see in the video is: The modem is turned on and the pic configures it to disable command echo, change to return numeric responses and turn off the volume of the modem speaker. The user has 15 seconds to leave the room, then the pic waits a motion detection. When it is detected the pic dials a fixed phone number and the user will receive the alert.

The pic is programmed in CCS and the source code is included. Well, I bet it’ll be a great project to make. ^_^

Source ORP Systems